Why mid vowels are not always mid vowels Marie-Luise Popp, Leipzig University

Puzzle Chain Shifts are phonological processes where an input element /A/ surfaces as [B] while /B/ becomes [C] in the output. However, /A/ does not surface as [C]. Well-known examples of Chain Shifts are partial height harmonies, as exemplified by Nzebi in (1). In these systems, /a/ becomes [e] and /e/ becomes [i], but /a/ does not become [i].

(1)	N	Izebi	(Bantu,	Gabo	on)					(Cleme	ents	1991; Par	kinson 1996)
a	\rightarrow	3	salə	\rightarrow	seli	'work'	e	\rightarrow	i	betə	\rightarrow	biti	'carry'
3	\rightarrow	e	sebə	\rightarrow	sebi	'laugh'	0	\rightarrow	u	βoomu	\rightarrow	βuumi	'breathe'

I will show that the opacity problems posed by **Chain Shifts** can easily be analysed within Containment Theory (Prince & Smolensky 1993; van Oostendorp 2003, 2006; Trommer 2011; Trommer & Zimmermann 2014). In Containment, phonological features are never deleted but remain in the phonological structure. Specifically, I suggest that a shift from /a/ to [i] leads to illicit combinations of features.

Chain Shifts in Containment Theory In Containment Theory (Prince & Smolensky 1993; van Oostendorp 2003, 2006; Trommer 2011; Trommer & Zimmermann 2014), deletion of phonological elements is impossible. Rather, phonological features can be inaccessible to phonetics but remain in the phonological structure. Thus, an underlying segment has a different featural specification than a derived segment. I make use of the consequence that an underlying vowel /e/ has different features than a vowel [e] that is derived by vowel raising. While an underlying /e/ is specified as [-high, -low], a derived [e] is necessarily specified as [-high, -low, +low] since the [+low] feature of the underlying /a/ remains phonologically accessible, as schematized in (2).

(2) Featural specifications of underlying vs. derived vowels

Furthermore, I adopt the Cloning Hypothesis (Trommer 2011) by assuming two versions of constraints:

- 1. **P-Constraints** only refer to the phonetically visible elements. marked with indexed $_{P}$
- 2. **I-Constraints** refer to all elements. marked with indexed I

I suggest that the featural specification prevents derived /e/ vowels from changing into [i]. This can be obtained by markedness constraints sensitive to all features in the candidate against illicit combinations of features within a segment: *[+LOW,+HIGH]_I, *[+LOW,+ATR]_I and *[+HIGH,-ATR]_I. Crucially, these constraints build on a strong phonological basis - evidence comes from the typology of vowels inventories (Casali 2014), the patterns of phonological processes (Archangeli & Pulleyblank 1994) or the phonetic markedness of certain segments (Hall 2000; Lulich & Cavar 2018).

The constraints that are used to model this idea in OT are listed in the following table:

- 1. *[+LOW,+HIGH]_I Avoid [+low,+high] vowels.
- 2. *[+LOW,+ATR]_I Avoid [+low,+ATR] vowels.
- 3. *[+HIGH,-ATR]_I Avoid [+high,-ATR] vowels.
- 4. $[FAITH]_F$ Do not make features of $[\pm F]$ phonetically invisible.
- 5. $[HARMONY]_F$ Avoid contradictory features of $[\pm F]$.

As seen in the tableau in (3), raising is driven by three harmony constraints, necessarily ranked higher than the respective faithfulness constraints. However, the constraint *[+LOW,+HIGH]_I rules out [i] as it penalizes a combination of a +low and +high feature on a single vowel and exactly such a combination arises if an underlyingly low vowel is raised to a high vowel.

(3)	Nzebi.	a	\rightarrow	ε
· •	2,	1,2001,	u		~

			/a/ - /i/	*[+lo,+hi] _I	*[+lo,+ATR] _I	*[+HI,-ATR] _I	[HARM] _{HI}	[HARM] _{LO}	[HARM] _{ATR}	$[FTH]_I$
a.		a	[-hi,+lo,-ATR]		 	 	*	*	*	
b.	1 37	ε	[-hi, <mark>+lo</mark> ,-ATR,-lo]				*	1	*	*!
c.		e	[-hi,+lo,-ATR,-lo,+ATR]		*!		*			**
d.		I	[-hi,+lo,-ATR,+hi,-lo]	*!	1	*!			*	**
e.		i	[-hi,+lo,-ATR,+hi,-lo,+ATR]	*!	*!	*!				***

(4) Nz ϵ bi, $\epsilon \rightarrow e$

/ɛ/ - /i/	*[+lo,+hi] _I	*[+LO,+ATR] _I	*[+HI,-ATR] _I	[Harm] _{hi}	[HARM] _{LO}	[HARM] _{ATR}	[Fth] _I
a. ε [-hi,-lo,-ATR]		1	1	*	1	*!	
b. 🖙 e [-hi,-lo,-ATR,+ATR]		1	1	*	1	1	*
c. I [-hi,-lo,-ATR,+high]		1	*!		1	· *	*
d. i [-hi,-ATR,-lo,+hi,+ATR]			*!		1	1	**

(5) Nzɛbi, $e \rightarrow i$

	/e/ - /i/	$*[+LO,+HI]_I$	$*[+lo,+ATR]_I$	$*[+HI,-ATR]_I$	[Harm] _{hi}	[Harm] _{lo}	[HARM] _{ATR}	[Fth] _I
a.	e [-hi,-lo,+ATR]				*!	1		
b.	I [-hi,-lo,+ATR,+hi,-ATR]			*!			*	**
с. ISP	i [-hi,-lo,+ATR,+hi]					1		*

Discussion Chain Shifts have previously been analysed by Kirchner (1996) who implements the mechanism of Constraint Conjunction (Smolensky 1993) . Concretely, he suggests that the top-ranked constraint is a conjunction of two markedness constraints $FAITH_{HIGH}$ & $FAITH_{LOW}$ which is violated only if both markedness constraints are violated thus preventing /a/ from becoming [i]. However, Neasom (2016) has argued that Chain Shifts do not form a coherent phenomenon and challenges approaches to Chain Shifts that need additional mechanisms to solve the opacity problems specific to Chain Shifts. The analysis that I have suggested here differs from previous analyses as it makes use of independently motivated constraints and a theory that has previously been shown to account for cases of opacity, like incomplete neutralization (van Oostendorp 2008) or grandfather effects (Zimmermann & Trommer 2016). Moreover, my analysis can be extended to other Chain Shifts such as the partial neutralization in Nzema (see (6)) as it seems natural that the shift from /t/ to [n] is prevented by a constraint *[+NAS,-VOICED].

(6)	Nzema (Niger	-Congo, Ghana)	(Clopper 2001)	
	$t \rightarrow d$	tia → on-dia	'he does not walk'	
	$d \rightarrow n$	di → on-ni	'he does not eat'	

Conclusion I will show that all types of Partial Height Harmonies can easily be analysed within Containment Theory by means of a number of independently motivated constraints which make powerful and potentially overgenerating mechanisms like Constraint Conjunction superfluous.

References

Archangeli, Diana & Douglas Pulleyblank. 1994. Grounded phonology, vol. 25. MIT Press.

- Casali, Roderic F. 2014. Assimilation, markedness and inventory structure in tongue root harmony systems.
- Clements, George N. 1991. Vowel height assimilation in Bantu languages. In *Annual meeting of the Berkeley linguistics society*, vol. 17 2, 25–64.
- Clopper, Cynthia. 2001. The Nzema verbal phrase: An optimality theoretic account. *IULC Working Papers* 1(1).
- Hall, Tracy Alan. 2000. Phonologie: Eine Einführung. Berlin/New York: De Gruyter.
- Kirchner, Robert. 1996. Synchronic chain shifts in optimality theory. Linguistic Inquiry 27(2). 341-350.
- Lulich, Steven M. & Malgorzata E. Cavar. 2018. The role of tongue root advance in palatalization: Evidence from Polish. Talk given at 26mfm.
- Neasom, Nicholas Charles. 2016. Against synchronic chain shifting: University College London dissertation.
- van Oostendorp, Marc. 2003. Comparative markedness and containment. *Theoretical linguistics* 29(1-2). 65–75.
- van Oostendorp, Marc. 2006. A theory of morphosyntactic colours. Ms., Meertens Institute, Amsterdam. Available under: http://egg. auf. net/06/docs/Hdt% 20Oostendorp% 20coulours. pdf .
- van Oostendorp, Marc. 2008. Incomplete devoicing in formal phonology. Lingua 118(9). 1362–1374.
- Parkinson, Frederick Brooke. 1996. *The representation of vowel height in phonology*: Ohio State University dissertation.
- Prince, Alan & Paul Smolensky. 1993. Optimality Theory: Constraint interaction in generative grammar. Tech. Rep. RuCCS-TR-2 Rutgers University Center for Cognitive Science and Computer Science Department, University of Colorado at Boulder.
- Smolensky, Paul. 1993. Harmony, markedness, and phonological activity. In *Rutgers optimality workshop*, vol. 1, 87–0000.
- Trommer, Jochen. 2011. *Phonological aspects of Western Nilotic mutation morphology*: dissertation. Habil.
- Trommer, Jochen & Eva Zimmermann. 2014. Generalised mora affixation and quantity-manipulating morphology. *Phonology* 31(3). 463.
- Zimmermann, Eva & Jochen Trommer. 2016. The typology of opacity and containment theory. Talk presented on 9 September 2016 at the LAGB Annual Meeting 2016 in York.