# Why mid vowels are not always mid vowels <br> Marie-Luise Popp, Leipzig University 

Puzzle Chain Shifts are phonological processes where an input element/A/ surfaces as [B] while /B/ becomes [C] in the output. However, /A/ does not surface as [C]. Well-known examples of Chain Shifts are partial height harmonies, as exemplified by Nzebi in (1). In these systems, /a/ becomes [e] and /e/ becomes [i], but /a/ does not become [i].
(1) Nzebi (Bantu, Gabon)
(Clements 1991; Parkinson 1996)

| a | $\rightarrow$ | $\varepsilon$ | salə | $\rightarrow$ | scli | 'work' | e | $\rightarrow$ | i | beta | $\rightarrow$ | biti | 'carry' |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon$ | $\rightarrow$ | e | scba | $\rightarrow$ | sebi | 'laugh' | o | $\rightarrow$ | u | ßoomu | $\rightarrow$ | $\beta$ uumi | 'breathe' |

I will show that the opacity problems posed by Chain Shifts can easily be analysed within Containment Theory (Prince \& Smolensky 1993; van Oostendorp 2003, 2006; Trommer 2011; Trommer \& Zimmermann 2014). In Containment, phonological features are never deleted but remain in the phonological structure. Specifically, I suggest that a shift from /a/ to [i] leads to illicit combinations of features.

Chain Shifts in Containment Theory In Containment Theory (Prince \& Smolensky 1993; van Oostendorp 2003, 2006; Trommer 2011; Trommer \& Zimmermann 2014), deletion of phonological elements is impossible. Rather, phonological features can be inaccessible to phonetics but remain in the phonological structure. Thus, an underlying segment has a different featural specification than a derived segment. I make use of the consequence that an underlying vowel /e/ has different features than a vowel [e] that is derived by vowel raising. While an underlying /e/ is specified as [-high, -low], a derived [e] is necessarily specified as [-high, -low, +low] since the [+low] feature of the underlying /a/remains phonologically accessible, as schematized in (2).
(2) Featural specifications of underlying vs. derived vowels


Furthermore, I adopt the Cloning Hypothesis (Trommer 2011) by assuming two versions of constraints:

1. P-Constraints only refer to the phonetically visible elements. marked with indexed $P$
2. I-Constraints refer to all elements.

I suggest that the featural specification prevents derived /e/ vowels from changing into [i]. This can be obtained by markedness constraints sensitive to all features in the candidate against illicit combinations of features within a segment: $*[+ \text { LOW, }+ \text { HIGH }]_{\mathrm{I}}, *[+ \text { LOW, }+ \text { ATR }]_{\mathrm{I}}$ and $*[+\mathrm{HIGH},-\mathrm{ATR}]_{\mathrm{I}}$. Crucially, these constraints build on a strong phonological basis - evidence comes from the typology of vowels inventories (Casali 2014), the patterns of phonological processes (Archangeli \& Pulleyblank 1994) or the phonetic markedness of certain segments (Hall 2000; Lulich \& Cavar 2018). The constraints that are used to model this idea in OT are listed in the following table:

1. $*[+ \text { LOW },+\mathrm{HIGH}]_{\mathrm{I}}$ Avoid [+low,+high] vowels.
2. $*[+ \text { LOW },+ \text { ATR }]_{I}$ Avoid [+low,+ATR] vowels.
3. $*[+\mathrm{HIGH},-\mathrm{ATR}]_{\mathrm{I}}$ Avoid [+high,-ATR] vowels.
4. $[\mathrm{FAITH}]_{\mathrm{F}}$ Do not make features of $[ \pm \mathrm{F}]$ phonetically invisible.
5. $[\mathrm{HARMONY}]_{\mathrm{F}}$ Avoid contradictory features of $[ \pm \mathrm{F}]$.

As seen in the tableau in (3), raising is driven by three harmony constraints, necessarily ranked higher than the respective faithfulness constraints. However, the constraint $*[+ \text { LOW, }+\mathrm{HIGH}]_{I}$ rules out $[\mathrm{i}]$ as it penalizes a combination of a +low and +high feature on a single vowel and exactly such a combination arises if an underlyingly low vowel is raised to a high vowel.
(3)

Nzebi, $a \rightarrow \varepsilon$

| /a/- /i/ | * $[+\mathrm{LO},+\mathrm{HI}]_{\mathrm{I}}$ | *[+LO,+ATR $]_{\text {I }}$ | $*[+\mathrm{HI},-\mathrm{ATR}]_{\mathrm{I}}$ | $[\text { HARM }]_{\mathrm{HI}}$ | , $[\mathrm{HARM}]_{\text {LO }}$ | , [HARM] ${ }_{\text {ATR }}$ | $[\mathrm{FTH}]_{\mathrm{I}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a. a [-hi, +lo,-ATR] |  | । | 1 | * | * | 1 * |  |
| b. $\varepsilon$ [-hi,+lo,-ATR,-lo] |  | 1 | 1 | * | 1 | * | *! |
| c. e [-hi, +lo,-ATR,-lo,+ATR ] |  | * ! | । | * | 1 | 1 | ** |
| d. I [-hi, +lo,-ATR,+hi,-lo] | *! | ! | $1 *$ ! |  | 1 | * | ** |
| e. i [-hi,+lo,-ATR,+hi,-lo,+ATR] | *! | *! | $1 \quad *$ ! |  | 1 | 1 | *** |

(4)

Nzebi, $\varepsilon \rightarrow \mathrm{e}$

| /e/- /i/ | $*[+\mathrm{LO},+\mathrm{HI}]_{\mathrm{I}}$ | *[+LO, +ATR $]_{\text {I }}$ | *[+HI,-ATR $]_{\text {I }}$ | $[\mathrm{HARM}]_{\mathrm{HI}}$ | , $[\mathrm{HARM}]_{\text {LO }}$ | [HARM] ${ }_{\text {ATR }}$ | $[\mathrm{FTH}]_{\mathrm{I}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a. $\varepsilon$ [-hi,-lo,-ATR] |  |  | 1 | * | , | $1 *$ ! |  |
| b. e [-hi,-lo,-ATR,+ATR] |  | ( | , | * | 1 | 1 | * |
| c. I [-hi,-lo,-ATR,+high] |  |  | *! |  | 1 | 1 * | * |
| d. i [-hi,-ATR,-lo,+hi,+ATR] |  |  | *! |  | ! | ! | ** |

(5)

Nzzbi, e $\rightarrow$ i

| /e/ - /i/ | * $[+\mathrm{LO},+\mathrm{HI}]_{\mathrm{I}}$ | *[+LO, +ATR $]_{\text {I }}$ | *[+HI,-ATR $]_{\mathrm{I}}$ | $[\mathrm{HARM}]_{\mathrm{HI}}$ | , $[\text { HARM }]_{\text {LO }}$ | , $[\text { HARM }]_{\text {ATR }}$ | $[\mathrm{FTH}]_{\mathrm{I}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a. e [-hi,-lo,+ATR] |  | , | , | *! | 1 | 1 |  |
| b. I [-hi,-lo,+ATR,+hi,-ATR] |  | , | 1 *! |  | 1 | * | ** |
| c. i [-hi,-lo,+ATR, +hi ] |  | , | 1 |  | 1 | 1 | * |

Discussion Chain Shifts have previously been analysed by Kirchner (1996) who implements the mechanism of Constraint Conjunction (Smolensky 1993) . Concretely, he suggests that the top-ranked constraint is a conjunction of two markedness constraints FAITH $_{\text {HIGH }}$ \& FAITH $_{\text {Low }}$ which is violated only if both markedness constraints are violated thus preventing /a/ from becoming [i]. However, Neasom (2016) has argued that Chain Shifts do not form a coherent phenomenon and challenges approaches to Chain Shifts that need additional mechanisms to solve the opacity problems specific to Chain Shifts. The analysis that I have suggested here differs from previous analyses as it makes use of independently motivated constraints and a theory that has previously been shown to account for cases of opacity, like incomplete neutralization (van Oostendorp 2008) or grandfather effects (Zimmermann \& Trommer 2016). Moreover, my analysis can be extended to other Chain Shifts such as the partial neutralization in Nzema (see (6)) as it seems natural that the shift from $/ \mathrm{t} / \mathrm{to}[\mathrm{n}]$ is prevented by a constraint *[+NAS,-vOICED].
(6) Nzema (Niger-Congo, Ghana)
(Clopper 2001)
$\begin{array}{llllll}\mathrm{t} & \rightarrow & \mathrm{d} & \text { tia } & \rightarrow & \text { on-dia } \\ \mathrm{d} & \rightarrow & \text { n } & \text { 'he does not walk' } \\ \text { di }\end{array}$

Conclusion I will show that all types of Partial Height Harmonies can easily be analysed within Containment Theory by means of a number of independently motivated constraints which make powerful and potentially overgenerating mechanisms like Constraint Conjunction superfluous.

## References

Archangeli, Diana \& Douglas Pulleyblank. 1994. Grounded phonology, vol. 25. MIT Press.
Casali, Roderic F. 2014. Assimilation, markedness and inventory structure in tongue root harmony systems.
Clements, George N. 1991. Vowel height assimilation in Bantu languages. In Annual meeting of the Berkeley linguistics society, vol. 17 2, 25-64.
Clopper, Cynthia. 2001. The Nzema verbal phrase: An optimality theoretic account. IULC Working Papers 1(1).
Hall, Tracy Alan. 2000. Phonologie: Eine Einführung. Berlin/New York: De Gruyter.
Kirchner, Robert. 1996. Synchronic chain shifts in optimality theory. Linguistic Inquiry 27(2). 341-350.
Lulich, Steven M. \& Malgorzata E. Cavar. 2018. The role of tongue root advance in palatalization: Evidence from Polish. Talk given at 26 mfm .
Neasom, Nicholas Charles. 2016. Against synchronic chain shifting: University College London dissertation.
van Oostendorp, Marc. 2003. Comparative markedness and containment. Theoretical linguistics 29(12). 65-75.
van Oostendorp, Marc. 2006. A theory of morphosyntactic colours. Ms., Meertens Institute, Amsterdam. Available under: http://egg. auf. net/06/docs/Hdt\% 20Oostendorp\% 20coulours. pdf .
van Oostendorp, Marc. 2008. Incomplete devoicing in formal phonology. Lingua 118(9). 1362-1374.
Parkinson, Frederick Brooke. 1996. The representation of vowel height in phonology: Ohio State University dissertation.
Prince, Alan \& Paul Smolensky. 1993. Optimality Theory: Constraint interaction in generative grammar. Tech. Rep. RuCCS-TR-2 Rutgers University Center for Cognitive Science and Computer Science Department, University of Colorado at Boulder.
Smolensky, Paul. 1993. Harmony, markedness, and phonological activity. In Rutgers optimality workshop, vol. 1, 87-0000.
Trommer, Jochen. 2011. Phonological aspects of Western Nilotic mutation morphology: dissertation. Habil.
Trommer, Jochen \& Eva Zimmermann. 2014. Generalised mora affixation and quantity-manipulating morphology. Phonology 31(3). 463.
Zimmermann, Eva \& Jochen Trommer. 2016. The typology of opacity and containment theory. Talk presented on 9 September 2016 at the LAGB Annual Meeting 2016 in York.

